Как влияют внешние факторы на наши гены?
Долгое время в биологическом сообществе господствовала идея, что индивидуальность каждого из нас определяется тем, какими генами мы обладаем. Однако не менее важно и то, какие из них мы используем. Как и всюду в биологии, последнее неразрывно связано с той же химией.
Клетки эмбриона на самых ранних стадиях дают начало тканям всех возможных типов. По мере его развития так называемые плюрипотентные стволовые клетки дифференцируются и превращаются в бодибилдинг. Последние сохраняют свои индивидуальные свойства на протяжении всей жизни организма. Формирование тела человека — это, по существу, химические превращения хромосом стволовых клеток, в результате которых изменяется набор функционирующих и молчащих генов.
Одно из революционных открытий в области клонирования и изучения стволовых клеток состоит в том, что упомянутые превращения обратимы. В процессе дифференциации клетки не инактивируют часть генов, поддерживая в рабочем состоянии только те, которые нужны сейчас. Они их выключают и поддерживают в состоянии боевой готовности. Данные гены могут активироваться, например, под действием определенных химических веществ внешней среды.
Особенно интересен и загадочен с точки зрения химии тот факт, что регуляция генной активности осуществляется на надатомном и надмолекулярном уровнях, при участии целых групп взаимодействующих друг с другом молекул. Хроматин — комплекс между ДНК и белками, образующий хромосомы, — имеет иерархическую структуру. Сначала двухцепочечная молекула ДНК обвивается вокруг частиц цилиндрической формы, состоящих из особых белков — гистонов. Затем образовавшаяся «нитка бус» укладывается в пространстве в структуры более высокого порядка. Клетка строго контролирует процесс укладки — от того, в каком месте в хроматине окажется данный ген, зависит его активность.
Перестройка структуры хроматина происходит при участии особых ферментов, играющих ключевую роль в клеточной дифференцировке. В эмбриональных стволовых клетках хроматин имеет рыхлую, неупорядоченную структуру, которая уплотняется по мере выключения генов в процессе дифференцировки.
Структурирование хроматина сопровождается химическими превращениями как ДНК. так и гистонов. К ним присоединяются небольшие молекулы — маркеры. указывающие клетке, какие гены выключить, а какие, напротив, включить. Такие метки носят название эпигенетических факторов, поскольку они не влияют на информацию, заключенную в генах.
До какой степени зрелые клетки можно вернуть в состояние плюрипотентности? Будут ли они обладать свойствами стволовых клеток, необходимыми для использования при регенерации различных тканей? Ответ зависит от того, в какой мере можно повернуть вспять эпигенетическое маркирование.
Совершенно очевидно, что помимо генетического языка, на котором записаны многие ключевые инструкции, клетки используют совершенно другой с химической точки зрения язык — эпигенетический. «Человек может иметь генетическую предрасположенность к какому-то заболеванию, например раку, но возникнет оно или нет, зависит от средовых факторов, действующих через эпигенетический канал», — говорит Брайан Тернер (Bryan Turner) из Бирмингемского университета в Англии.